Skip to main content

Topp 10 Business Intelligence-trender for 2021

Hva er det som skjer innen data, business intelligence og analyse i 2021? BARC’s Trend Monitor 2021 reflekterer rundt business intelligence, analyse og data management trender i BI-markedet. Her får du de ti viktigste!

Business Intelligence trender for 2020

Året 2020 har bydd på store endringer hos mange virksomheter. For mange har dette betydd usikre tider, noe som preger trendbildet for 2021. Barc melder at de observerer at hypede temaer, slik som kunstig intelligens (AI) og maskinlæring (ML), har blitt satt i bakgrunn i møte med en pandemi. I stedet har selskaper fokusert mer på grunnleggende funksjoner og prosesser. 

De fleste trendene er ganske stabile fra året før, noe som viser oss at selv i endringsperioder skrifter ikke selskaper drastisk sitt fokus.

BARC har spurt 2.295 brukere, konsulenter og leverandører om deres syn på hva som vil bli de viktigste BI trendene i 2021. Rapporten viser derfor hvilke trender som for tiden anses å være viktige av en bred gruppe fagpersoner innen BI og analyse. Svarene deres gir en omfattende gir innsikt i utviklingen i BI-markedet og fremtiden for BI.

Topp 10 business intelligence trender 2021

Master data management, datafunn og datavisualisering, og datadrevet kultur er de tre temaene som identifiseres som de viktigste trendene for 2021. At Master data management havner på førsteplass og datafunn som nummer to er ikke overraskende, da dette er to trender vi har sett på topplasseringene i fire år på rad. 

La oss ta en titt på hver enkelt trend:

1. Master data management

På fjerde året på rad er det data management som troner som den største trenden i BI- og analyse markedet. BARC påpeker at det er en enkel grunn til at akkurat datakvalitet og data management trender i markedet, nemlig at de riktige beslutningene kan kun baseres på data som er korrekt og oppdatert. Man må altså kunne stole på at dataene er riktig for å kunne ta gode beslutninger.

Målet med master data management er å samle inn og dele data, som kunde-, leverandør- eller produkt-masterdata, på tvers av flere systemer. Les mer om data management her.

2. Datafunn og datavisualisering

Datafunn handler om å oppdage mønstre og/eller avvik i data. Datavisualisering handler om hvordan man presenterer data, til riktige mennesker, på riktig tidspunkt. Denne trenden fokuserer derfor på tilgjengeliggjøring av data.

Utviklingen innenfor datafunn og datavisualisering skjer særlig på to områder. Forbedring av brukerveiledning og automatisering er øverst på agendaen for mange av leverandørene i denne bransjen. Man benytter i større grad maskinlæring for å veilede analytikere og for å automatisere oppgaver gjennom alle trinn, fra forberedelse av data til visualisering. I tillegg blir funksjoner for datafunn i økende grad bygget inn i analyse- og BI-plattformer, slik at data enkelt kan deles med hele virksomheten. 

Få et dypere innblikk i årets trender. Last ned rapporten til Barc for å lese om alle trendene.

Last ned: BARC Trend Monitor 2021

3. Datadrevet kultur

Datadrevet betyr i denne sammenhengen at alle beslutninger og prosesser i en virksomhet er basert på data. Organisasjoner endrer strategien sin fra at kun noen få utvalgte skal ha tilgang til data og innsikt, til at data blir spredt ut i hele organisasjonen slik at alle kan ta datadrevne beslutninger. Data må bli en del av identiteten til organisasjonen. De ansatte har et felles mål om å forbedre og utvikle organisasjonen og seg selv, ved hjelp av data. 

Les mer: Hvordan skape en datakultur?

4. Data governance

I motsetning til BI- eller analysestyring, som handler om å utarbeide og presentere data for styringssystemer for forretning, fokuserer data governance (styring av data) på selve dataene i disse systemene. Datastyring er nødvendig som en mekanisme for datastrategi. En god datastrategi tar for seg hvordan forretningsstrategi blir oversatt til data og analyse.

Data governance kreves for å implementere en datastrategi, og inneholder regler og rammeverk for å håndtere, overvåke og beskytte data, samtidig som man tar hensyn til mennesker, prosesser og teknologi. Å etablere data governance er en langsiktig bestrebelse. Først og fremst krever det en tydelig og bevisst ledelsesbeslutning på hvordan man skal jobbe med og bruke data. 

Last ned gratis e-bok: Data governance do’s and don’ts: The 12 labors of the data governance hero

5. Self-Service Analytics

Self-service Analytics har lenge vært på ønskelisten til mange virksomheter, og har fortsatt høy prioritet. Brukere krever at data er tilgjengelig når som helst, hvor som helst og på hvilken som helst enhet. 

Virksomheter fokuserer ikke lenger utelukkende på å tilby muligheter for self-service. De ønsker også å demokratisere datatilgangen samtidig som de sikrer jevn og høy kvalitet på dataene og resultatene. 

Les mer: Fleksibilitet med self-service BI

6. Modernisering av datavarehus

Det gamle datavarehus landskapet har blitt for komplekst til å kunne støtte smidig utvikling, og ofte er det for kostbart. I tillegg er implementeringsmodellen utdatert, fordi den ikke er designet og optimalisert for den måten man jobber med analytics i dag. 

Stadig flere virksomheter forstår de nye utfordringene, og ser potensialet og mulighetene som følger med moderne datavarehus. En nyvinning innen datavarehusteknologi er datavarehusautomasjon, som sparer tid og effektiviserer arbeidet med ETL. Virksomheter begynner nå å se de store mulighetene som finnes med disse metodene.

Les mer: Deep Dive to Data Warehouse Automation

7. Data prep

Å kunne preppe dataene dine er en helt grunnleggende komponent for å oppnå gode resultater med BI. Data prep handler om prosessen der brukerne vasker, strukturerer og beriker data for bruk i analyser. Målet med data prep er å gjøre rådata til verdifull innsikt som kan brukes til å besvare konkrete forretningsspørsmål. 

Stadig behov for data prep viser at oppgaven i økende grad er i ferd med å flytte seg fra IT til forretningsbrukere. Derfor er det viktig med et godt samarbeid mellom utviklingsressurser i IT og forretningsbrukere. Brukervennlige og intuitive verktøy som tilbyr automasjon basert på machine learning er viktig for å få effektivitet og kvalitet i data preppen. Viktigheten av data governance i denne prosessen kan ikke overvurderes. 

 Les mer om datavarehusautomasjon her. 

8. Smidig BI utvikling 

Begrepet “smidig” har i økende grad blitt brukt i forbindelse med business intelligence de siste årene. Ofte brukes begrepet i forbindelse med utvikling av store IT-løsninger, men nå brukes det også i forbindelse med utvikling av datamodeller, rapporter, dashboards og visualiseringer. Smidig utvikling av BI prosjekter krever at forretningen og IT samarbeider godt. 

De fleste som bruker begrepet ‘smidig BI’ bruker begrepet for å uttrykke sin forventning om at eldre, eksisterende BI-løsninger og BI-organisasjoner raskere skal støtte endringer i forretningsprossesser som balanserer mellom self-service og tradisjonell prosjektleveranse. 

Smidig BI krever at virksomheten adopterer en iterativ tilnærming til utvikling, med et nært samarbeid mellom forretning og it. Mange virksomheter er ikke organisasjonsmessig klar for dette, og kanskje må noen orgnisasjonsstrukturer endres. Ideelt skal smidig BI utvikling også støttes av smidig prosjektledelse som iterativt styrer planlegging, kravinnhenting, og også automatisk testing. 

9. Real-time Analytics

Hurtigere rapportering og analyse av data er en utfordring i mange selskaper. Det er et økende behov for å gjøre data tilgjengelige umiddelbart for å støtte raskere og faktabasert operativ beslutningstaking. Real-time analytics vil si nærmest umiddelbar behandling eller streaming av informasjon om virksomheten i sanntid. Man vil da kunne fange opp hendelser eller andre nye data umiddelbart etter de forekommer og de vil være klare for visualisering eller analyse. 

Er du interessert i Real-time analytics? Sjekk ut våre tjenester her. 

10. Varslinger

Alerting, eller varsling på norsk, er ikke en ny funksjon innenfor analyse og BI, men i det siste har applikasjonen endret seg betydelig. Varsling har alltid hatt som mål å spare tid ved å sørge for at oppmerksomheten til brukerne har riktig fokus ved hjelp av notifikasjoner. Tilnærmingen krevde at man har en klar definisjon av hva som er relevant, og derfor har det ikke levd helt opp til hva som var lovet.

I nyere tid har varslinger blitt bedret ved at man har flyttet fra forhåndsdefinert relevans til maskinfremstilte anbefalinger basert på bruksmønstre.

Oppsummering

Trendene fra BARC sin undersøkelse viser at virksomheter er klare for å kunne administrere sine egne data og ta dem i bruk. I tillegg viser de at virksomheter er opptatt av høy kvalitet og effektiv bruk av data. Oppsummert tilsier dette at virksomheter ønsker å gå utover det å kun samle inn så mye data som mulig, men at de ønsker å aktivt bruke data av god kvalitet for å kunne forbedre sine beslutninger. Dette støttes også av trenden om modernisering av datavarehusene. 

Få et dypere innblikk i årets trender. Last ned Barc rapporten:

Data, BI and Analytics Trend Monitor 2021

Mest populære